Reinforced Concrete Design

By: Prof. Dr. Haleem K. Hussain

University Of Basrah Engineering College Civil Engineering Department

E-Mail: haleem brew valnue com

Chapter III

Flexural Design of Reinforced Concrete

Introduction

In the previous chapter, the analysis of different reinforced concrete sections was explained. Details of the section were given, and we had to determine the design moment of the section. In this chapter, the process is reversed: The external moment is given, and we must find safe, economic, and practical dimensions of the concrete section and the area of reinforcing steel that provides adequate internal moment strength.

Rectangular Sections With Tension Reinforcement Only
From the analysis of rectangular singly reinforced sections the following equations were derived for tension-controlled sections, where $\mathrm{f}^{\prime} \mathrm{c}$ and fy are in MPa:

$$
\begin{gathered}
\rho_{b}=\frac{0.85 f c^{\prime}}{f y}\left(\frac{600}{600+\boldsymbol{f y}}\right)\left(\frac{d t}{\boldsymbol{d}}\right) \\
\rho_{\max }=\left(\frac{0.003+\frac{f y}{E s}}{0.008}\right) \rho_{b} \text { or } \quad \rho_{\max }=\frac{3}{8} \frac{\beta}{m}\left(\frac{d_{t}}{d}\right) \\
m=\frac{f y}{0.85 f^{\prime} c} \\
\beta_{1}=0.85-0.05\left(\frac{f^{\prime} c-28}{7}\right) \geq 0.56
\end{gathered}
$$

$$
\begin{array}{ll}
\text { For fy }=420 \mathrm{Mpa} & \rho_{\max }=0.6375 \rho_{b} \\
\text { For fy }=280 \mathrm{Mpa} & \rho_{\max }=0.55 \rho_{b} \\
\text { For fy }=350 \mathrm{Mpa} & \rho_{\max }=0.594 \rho_{b} \\
\beta_{1}=0.85-0.05 \frac{f^{\prime} c-28}{7} \geq 0.56 \\
\\
m=\frac{f y}{0.85 f^{\prime} c} &
\end{array}
$$

It should be clarified that the designer has a wide range of choice between a large concrete section and relatively small percentage of steel ρ, producing high ductility and a small section with a high percentage of steel with low ductility. A high value of the net tensile strain, εt, indicates a high ductility and a relatively low percentage of steel. The limit of the net tensile strain for tension-controlled sections is 0.005 ,with $=0.9$. The strain limit of 0.004 can be used with a reduction in ϕ. If the ductility index is represented by the ratio of the net tensile strain, ε t, to the yield strain, $\varepsilon y=f y / E s$, the relationship between εt, / b, , and $\varepsilon t / \varepsilon y$ is shown in Table below for fy=420 MPa. Also, the ACI Code, Section 6.6.5.1, indicates that εt should be ≥ 0.0075 for the redistribution of moments in continuous flexural members producing a ductility index of 3.75 . It can be seen that adopting $\varepsilon_{t} \geq 0.005$ is preferable to the use of a higher steel ratio, $\rho / \rho \mathrm{b}$, with $\varepsilon_{\mathrm{t}}=0.004$, because the increase in Mn is offset by arower ϕ. The value of $\varepsilon_{t}=0.004$ represents the use of minimum steel percentage of 0.00333 for $f^{\prime} c=28 \mathrm{Mpa}$ and $\mathrm{fy}=420 \mathrm{Mpa}$.This case should be avoided.

For $f y=420 M p a$

$\varepsilon_{\boldsymbol{t}}$	$\mathbf{0 . 0 0 4}$	$\mathbf{0 . 0 0 5}$	$\mathbf{0 . 0 0 6}$	$\mathbf{0 . 0 0 7}$	$\mathbf{0 . 0 0 7 5}$	$\mathbf{0 . 0 0 8}$	$\mathbf{0 . 0 0 9}$	$\mathbf{0 . 0 1 0}$	$\mathbf{0 . 0 4 0}$
ρ / ρ_{b}	0.714	0.625	0.555	0.500	0.476	0.454	0.417	0.385	0.117
$\varepsilon_{t} / \varepsilon_{y}$	2.0	2.5	3.0	3.5	3.75	4.0	4.5	5.0	20
ϕ	0.82	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

The value of ε_{t} between $\varepsilon_{\mathrm{t}}=0.005$ and $\varepsilon_{\mathrm{t}}=0.004$ can be calculated from Eq. :

$$
\phi=0.65+(\varepsilon t-0.002)\left(\frac{250}{3}\right) .
$$

The design moment equations were derived in the previous chapter in the following forms:

$$
\begin{aligned}
& \phi M n=M u=\phi R b d^{2} \\
& R=\emptyset \rho f y\left(1-\frac{1}{2} \rho m\right)
\end{aligned}
$$

This equation have two unknown, this can be find by assumes $\rho \leq \frac{1}{2} \rho_{\max }$ for and also assume value of b then we can find the value of h
For design purpose, two method can be adopted:
A- First Case
The knowns is $M u$ and the properties of used material and the unknowns is $A s, d, b$
1 - assume $\rho \leq \frac{1}{2} \rho_{\max }$ and assume b
2 - find value of R :

$$
R=\emptyset \rho f y\left(1-\frac{1}{2} \rho m\right) \quad \text { and } \quad m=\frac{f y}{0.85 f^{\prime} c}
$$

3 - find the effective depth d from equation :

$$
\begin{gathered}
\phi M n=M n=\phi R b d^{2} \\
d=\sqrt{\frac{M u}{\emptyset R b}}
\end{gathered}
$$

4- Calculate As:

$A s=\rho b d$
Then choose a suitable bar diameter numbers and calculate the total depth h considering the concrete cover (h should be choose around 10 mm)

B- Second Case
-The knowns $\boldsymbol{M u}$ and the dimension of section according to the architectural requirement

- Unknown is the steel Area As

1- calculate R value

$$
R=\frac{M u}{\emptyset b d^{2}}
$$

2- Calculate steel Ratio ρ from :

$$
\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f y}}\right)
$$

Then compare value of ρ min and ρ max with value of ρ
3- calculate the As

$$
A s=\rho b d
$$

than find the no. of bars
If $\rho>\rho_{\max }$, the section should be design as Double reinforced section

Spacing Of Reinforcement And Concrete Cover

Specifications

Figure below shows two reinforced concrete sections. The bars are placed such that the clear spacing shall be at least the greatest of (25 mm), nominal bar diameter D , and $(4 / 3) \mathrm{d}_{\text {agg. }}$. (nominal maximum size of the aggregate), (ACI Code, Section 25.2.1). Vertical clear spacing between bars in more than one layer shall not be less than (25 mm), according to the ACI Code, Section 25.2.2. Also for reinforcement of more than two layers, the upper layer reinforcement shall be placed directly above the reinforcement of the lower layer. The width of the section depends on the number, n, and diameter of bars used. Stirrups are placed at intervals; their diameters and spacing depend on shear requirements, to be explained later. At this stage, stirrups of $(10 \mathrm{~mm})$ diameter can be assumed to calculate the width of the section. There is no need to adjust the width , b , if different diameters of stirrups are used. The specified concrete cover for cast-in-place and pre-cast concrete is given in the ACI Code, Section 20.6.1. Concrete cover for beams and girders is equal to $(38 \mathrm{~mm})$, and that for slabs is equal to $(20 \mathrm{~mm})$, when concrete is not exposed to weather or in contact with the ground.

Minimum Width of Concrete Sections

The general equation for the minimum width of a concrete section can be written in the form
$b_{\min }=n \times D+(n-1) \times s+2 \times($ stirrup diameter $)+2 \times($ concrete cover $)$

Where:

$n=$ number of bars
$D=$ diameter of largest bar used
$s=$ spacing between bars (equal to D or 25 mm , whichever is larger)

If the stirrup's diameter is taken equal to $(10 \mathrm{~mm})$ and concrete cover equals.$(38 \mathrm{~mm})$,then

$$
B_{\min }=n \times D+(n-1) \times s+96
$$

This equation, if applied to the concrete section s in Fig, above becomes:

$$
\begin{aligned}
& b_{1}=3 D+2 S+(96 \mathrm{~mm}) \\
& b_{2}=3 D+2 S+(96 \mathrm{~mm}) \text { while for } 4 \text { bars } \quad b 1=4 D+3 S+(96 \mathrm{~mm})
\end{aligned}
$$

In fig. below, $\mathrm{c}=20 \mathrm{~mm}$ when ds more than 10 mm $b_{\text {min }}=2 \times 38+2 d s+2 c+(n-1)(D+S)$
$b_{\text {min }}=116+2 d s+(n-1)(D+S)$

If b is known then:

$$
\text { Bar No. }=n=\frac{b-116-2 d s}{D+S}+1
$$

Minimum Over all Depth of Concrete Sections

The effective depth, d , is the distance between the extreme compressive fibers of the concrete section and the centroid of the tension reinforcement. The minimum total depth is equal to d plus the distance from the centroid of the tension reinforcement to the extreme tension concrete fibers, which depends on the number of layers of the steel bars .In application to the sections shown in Fig

$$
\begin{array}{cc}
h_{1}=d_{1}+\frac{D}{2}+d s .+38 \mathrm{~mm} & \text { One layer } \\
h_{2}=d_{2}+\frac{25}{2}+D+d s+38 \mathrm{~mm} & \text { Two layer }
\end{array}
$$

When use bar diameter $\emptyset \leq 28 \mathrm{~mm}$ then total depth calculated from :

$$
\begin{array}{ll}
h=d+65 \mathrm{~mm} & \text { one layer } \\
\text { Or } & \\
h=d+90 \mathrm{~mm} \quad \text { two layer }
\end{array}
$$

It should be mentioned that the minimum spacing between bars depends on the maximum size of the coarse aggregate used in concrete. The nominal maximum size of the coarse aggregate shalleme be larger than oneFifth of the narrowest dimension between sides of forms, or one-third of the depth of stabes or theectionnite of the minimum clear spacing between individual reinforcing bars or bundles of bars (ACI Code, sectronm 26.4.2.1).

Example (1): Design a simply reinforced rectangular section to resist a factored moment of 490 KN.m using the maximum steel percentage $\rho_{\max }$ for tension-controlled sections to determine its dimension. Given: $f^{\prime} c=21$ $\mathrm{MPa} \mathrm{fy}=420 \mathrm{MPa}$.

Sol.
for $f^{\prime} c=21$ MPa then $\quad \beta_{1}=0.85$
$m=\frac{f y}{0.85 f^{\prime} c}=23.53, \quad \varnothing=0.9$
$\rho_{b}=\frac{\beta_{1}}{m}\left(\frac{600}{600+f y}\right)\left(\frac{d t}{d}\right)=\frac{0.85}{23.53}\left(\frac{600}{600+420}\right)(1)=0.02125$
$\rho_{\max }=\left(\frac{0.003+f y / E s}{0.008}\right) \rho_{\mathrm{b}}=\left(\frac{0.003+0.0021}{0.008}\right) \rho_{b}=0.6375 \rho_{\mathrm{b}}$
$\rho_{\text {max }}=0.01355$
$R=\rho f y\left(1-\frac{1}{2} \rho m\right)=0.01355 \times 420\left(1-\frac{1}{2} \times 0.01355 \times 23.53\right)=4.784 \mathrm{MPa}$
$M n=\frac{M u}{\emptyset}=R b d^{2}$
$b d^{2}=\frac{M u}{\emptyset R}=\frac{490 \times 10^{6}}{0.9 \times 4.784}=113805277 \mathrm{~mm}^{3}$
Assume b and find d

b mm	d mm	As mm²
250	672.18	2298.86
300	613.61	2518.25
350	568.09	2720.00
400	531	2907.83

If we choose $b=250 \mathrm{~mm}, d=672.18 \mathrm{~mm}$
$\emptyset 22 \mathrm{~mm}\left(380 \mathrm{~mm}^{2}\right)$.
No. of Bars $=n=\frac{2298.86}{380}=6.04$ Use 6 Bars
Bar No. $(n)=\frac{b-116-2 d s}{D+S}+1$

$$
\begin{aligned}
& d s=10 \mathrm{~mm}, D=22 \mathrm{~mm}, S=25 \mathrm{~mm} \\
& n=\frac{250-116-2 \times 10}{22+25}+1=3.42=3
\end{aligned}
$$

If use two layer $\quad h=d+90 \mathrm{~mm}=762.18 \mathrm{~mm} \quad$ use $h=770 \mathrm{~mm}$
(increase the value for 10 mm)

Check the effective depth :
$d=h-38-10-22-\frac{25}{2}=770-38-10-22-12.5=687.5 \mathrm{~mm}$
$b=250 \mathrm{~mm}$
$\rho_{b}=\frac{\beta_{1}}{m}\left(\frac{600}{600+f y}\right)\left(\frac{d t}{d}\right)$
$\mathrm{d}_{\mathrm{t}}=770-38-10-\frac{22}{2}=711 \mathrm{~mm}$
$\rho_{\mathrm{b}}=\frac{0.85}{23.53}\left(\frac{600}{600+420}\right)\left(\frac{711}{687.5}\right)=0.02219$
$\rho_{\text {max }}=\left(\frac{0.003+f y / E s}{0.008}\right) \rho_{b}=\left(\frac{0.003+0.0021}{0.008}\right) \times \rho_{b}=0.6375 \rho_{b}$
$\rho_{\max }=0.6375 \times 0.02219=0.014146$
$M n=\frac{M u}{\emptyset}=R b d^{2}$
$\rho=\frac{A s}{b d}=\frac{6 \times 380}{250 \times 687.5}=0.01326<\rho_{\max }$
$R=\rho f y\left(1-\frac{1}{2} \rho m\right)=0.01326 \times 420\left(1-\frac{1}{2} 0.01326 \times 23.53\right)=4.7$
$M n=4.7 \times 250 \times 687.52=555.37 \mathrm{KN} . \mathrm{m}$
$M u=\emptyset M n=0.9 \times 555.37=499.83$ KN. $m \quad M u=490 K N . m \quad O K$

Example (2): Design a simply reinforced rectangular section with steel percentage $\rho=0.5 \rho_{\max }$ of previous example
Sol:
$\rho=0.5 \rho_{\text {max }}$ then tension Controlled section $\quad \phi=0.9$
$\rho=0.5 \times(0.01368) \quad$ (previous Example Exa. (1))
$\rho=0.00684$
$R=\emptyset \rho f y\left(1-\frac{1}{2} \rho m\right)$

$$
=0.9 \times(0.00684) \times(420)(1-0.5 \times(0.00684) \times(23.53))=2.642
$$

$\mathrm{d}=\sqrt{\frac{M u}{\emptyset b R}}=\sqrt{\frac{490 \times 106}{0.9 b \times 2.642}}$
Assume b to find d :

b mm	d mm	As mm²
250	907.9	1552.5
300	828.8	1700.7
350	767.3	1836.9
400	717.8	1963.8

Use $b=300$, then $d=828.2 \mathrm{~mm}, \quad A s=1700.7 \mathrm{~mm}^{2}$
Use $\emptyset 25 \mathrm{~mm}$
$A b=490 \mathrm{~mm}^{2}$
No. of bars $=n=\frac{1700.7}{490}=3.47 \mathrm{~mm} \quad$ use 4 bar
To find the bw, how many bars can be contains :
$n=\frac{b-116-2 \times d s}{D+s}+1=\frac{300-116-2 \times 10}{25+25}+1=4.28 \quad$ use 4 bar
Use One layer
Find total depth of Beam h
$h=d+38+d s+\frac{D}{2}$
$=828.8+38+10+\frac{25}{2}=889.3 \mathrm{~mm}$
Use h=890 mm
Note that in this example (2), the value of h use less than calculated nearest 10 mm , cause the provided steel area is larger than required area and this allow to use h less than calculated.

While in example (1) the selected h was greater than the calculated cause the provided steel area was less than required in very small a mount

300 mm
$d=890-38-10-\frac{25}{2}=829.5 \mathrm{~mm}$
$\rho=\frac{A s}{b d}=\frac{4 \times 490}{300 \times 829.5}=0.007876$
$R=\emptyset \rho f y\left(1-\frac{1}{2} \rho m\right)=0.07876(420)(1-0.5(0.007876)(23.53))=3.0 M P a$
$M n=3 \times 300 \times(829.5)^{2}=619.26 \mathrm{KN} . \mathrm{m}$
$\emptyset M n=M u=0.9 \times 619.26=557.33 \mathrm{KN} . \mathrm{m}>M u=490 \mathrm{KN} . \mathrm{m}$

Example (3): Find the necessary reinforcement for a given section that has a width of 250 mm and a total depth of 500 mm , if it is subjected to an external factored moment of 222 KN . m. Given: $\mathrm{f}^{\prime} \mathrm{c}=28 \mathrm{mPa}$ and $\mathrm{fy}=420 \mathrm{mPa}$.

Solution

Assume one layer of steel

$$
\begin{aligned}
& d=h-65 \mathrm{~mm}=500-65=435 \mathrm{~mm} \\
& R=\frac{M n}{b d^{2}}=\frac{M u}{\emptyset b d^{2}}=\frac{222 \times 10^{6}}{0.9 \times 250 \times 4352}=5.214 \\
& \rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f y}}\right) \\
& m=\frac{f y}{0.85 f^{\prime} c}=\frac{420}{0.85 \times 28}=17.65 \\
& \rho=\frac{1}{17.65}\left(1-\sqrt{1-\frac{2 \times 17.65 \times 5.214}{420}}\right)=0.01419 \\
& \rho_{b}=\frac{\beta_{1}}{m}\left(\frac{600}{600+f y}\right)\left(\frac{d t}{d}\right)=\frac{0.85}{17.65}\left(\frac{600}{600+420}\right)(1)=0.028328
\end{aligned}
$$

$$
\rho_{\max }=\left(\frac{0.003+\frac{f y}{E s}}{0.008}\right) \rho_{b}=\frac{0.0051}{0.008} \times \rho_{b}=0.6375 \rho_{b}=0.6375 \times 0.028328=0.018059>\rho=0.01419
$$

Tension Controlled section $\quad \varnothing=0.9$
$A s=\rho \times b \times d=0.01419 \times 250 \times 435=1543.1 \mathrm{~mm}^{2}$
Use $\emptyset 20 \mathrm{~mm}\left(\mathrm{~A}_{\mathrm{b}}=314 \mathrm{~mm}^{2}\right)$
No. of bars $=\frac{1543.1}{314}=4.91 \quad$ Use $5 \varnothing 20 \mathrm{~mm}$
Check spacing between bars
$n=\frac{b-116-2 \times d s}{D+s}+1=\frac{250-116-2 \times 10}{20+25}+1=3.53$ use 3 bars
Need two layers
Or increased the steel bar area
$y^{\prime}=\frac{2 \times 314 \times 103+3 \times 314 \times 58}{5 \times 314}=76 \mathrm{~mm}$
$d=h-76=500-76=424 \mathrm{~mm}$

$\rho=\frac{5 \times 314}{b d}=\frac{5 \times 314}{250 \times 424}=0.01481$
$R=\rho f y\left(1-\frac{1}{2} \rho m\right)=0.01481 \times 420\left(1-\frac{1}{2}(0.01481 \times 17.65)\right)=5.407$
$\emptyset M n=M u=\emptyset R b d^{2}=0.9 \times 5.407 \times 250 \times 4242=218.72$ KN. $m<M u$ applied
Note: we can start solution by assuming two layer and $\mathrm{d}=\mathrm{h}-90 \mathrm{~mm}$

Thank You...........

Reinforced Concrete Design

By: Assist. Prof. Dr. Haleem K. Hussain

University Of Basrah Engineering College Civil Engineering Department

E-Mail: haleem brew valnue com

Rectangular Sections With Compression Reinforcement

A singly reinforced section has its moment strength when $\rho_{\max }$ of steel is used. If the applied factored moment is greater than the internal moment strength, as in the case of a limited cross section, a doubly reinforced section may be used, adding steel bars in both the compression and the tension zones. Compression steel will provide compressive force in addition to the compressive force in the concrete area.

The procedure for designing a rectangular section with compression steel when $M_{u}, f^{\prime} c, f y, b, d$, and d^{\prime}
are given can be summarized as follows:
When $\mathrm{Mu}>\emptyset \mathrm{Mn}_{\text {max }}$
1- calculate $\quad \rho_{\mathrm{b}}=\frac{\beta_{1}}{m}\left(\frac{600}{600+f y}\right)\left(\frac{d t}{d}\right)$
and calculate $\rho_{\max }=\left(\frac{0.003+\frac{f y}{E s}}{0.008}\right) \rho_{b}$ or calculate $A_{s 1}=\rho_{1} b d$ (maximum steel area as singly reinforced).
where $\rho_{1}=0.75 \rho_{\max }$ to $\rho_{\max }$, and As_{1} and its preferable to use $\rho_{1}=0.75 \rho_{\max }$
using to produces moment equal to Mn_{1}

$$
R=\rho_{1} f y\left(1-\frac{1}{2} \rho m\right) \quad \text { and } \quad M n_{1}=R b d^{2} \text { or } M u_{1}=\emptyset R b d^{2}
$$

2. Calculate $M_{u 2} \quad M_{u}-M_{u 1}$, or $M n_{2}=M n-M n_{1}$, the moment to be resisted by compression steel.
3. Calculate the $\mathrm{As}_{2}=$ in tension zone where ;

$$
A s=A s_{1}+A s_{2} \quad \text { and } \quad A s_{2}=\frac{M n_{2}}{f y\left(d-d^{\prime}\right)}
$$

4. Calculate the compression stress at the compression steel and check the condition :

$$
\rho_{1}=\rho-\rho^{\prime} \geq\left(\frac{\beta_{1} d^{\prime}}{m d}\right)\left(\frac{600}{600-f y}\right)
$$

It the condition is checked then: $f s^{\prime}=f y$
And If not then $f s^{\prime}<f y$ and $f s^{\prime}$ calculated from formula:
$f s^{\prime}=600\left(1-\frac{\beta_{1} d^{\prime}}{\rho_{1} m d}\right) \leq f y$

$$
\begin{gathered}
f s^{\prime}=600\left(\frac{C-d^{\prime}}{C}\right)=600\left(1-\frac{d^{\prime}}{C}\right) \\
a=\rho_{1} m d \quad \text { and } C=\frac{a}{\beta_{1}} \\
\therefore \quad C=\frac{\rho_{1} m d}{\beta_{1}} \\
\therefore f s^{\prime}=600\left(1-\frac{\beta_{1} d^{\prime}}{\rho_{1} m d}\right)
\end{gathered}
$$

In case of $f s^{\prime}=f y$ use $A s^{\prime}=A s_{2}$

$$
\text { and } f s^{\prime}<f y \text { use } A s^{\prime}=A s_{2} \times\left(\frac{f y}{f s^{\prime}}\right)
$$

5. Choose the Tension steel bar diameter and compression steel bar whether can arrange in single layer

Example (4): A beam section is limited to a width $b=250 \mathrm{~mm}$. and a total depth $h=550 \mathrm{~mm}$ and has to resist a factored moment of $307 \mathrm{KN} . \mathrm{m}$. Calculate the required reinforcement. Given: $f^{\prime}{ }_{c}=21 \mathrm{mPa}$ and $f_{y}=350$ mPa . $d^{\prime}=65 \mathrm{~mm}$.

Solution

Determine the design moment strength that is allowed for the section as singly reinforced based on tensioncontrolled conditions;
Assume (Two layer of steel) (assume $\phi 28 \mathrm{~mm}$)
Then $d=h-90=550-90=460 \mathrm{~mm}$
$d t=460+\frac{25}{2}+\frac{28}{2}=486.5 \mathrm{~mm}$
$1-$ calculate $\rho_{b}=\frac{\beta_{1}}{m}\left(\frac{600}{600+f y}\right)\left(\frac{d t}{d}\right)$
$m=\left(\frac{f y}{0.85 f^{\prime} c}\right)=\frac{350}{0.85 \times 21}=19.61 \quad$ and $\quad \beta_{1}=0.85$
$\rho_{b}=\frac{0.85}{19.61}\left(\frac{600}{600+350}\right)\left(\frac{486.5}{460}\right)=0.02896$
$\rho_{\max }=\left(\frac{0.003+\frac{f y}{E s}}{0.008}\right) \rho_{b}=\left(\frac{0.003+\frac{350}{200000}}{0.008}\right) \times 0.02896=0.01719 \quad$ or $\rho_{\max }=\frac{3}{8} \times \frac{f(d t)}{m}\left(\frac{d}{d}\right)$
$M u=\emptyset R b d^{2}$
$R=\frac{307 \times 10^{6}}{0.9 \times 250 \times 460^{2}}=6.448$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f y}}\right)=\frac{1}{19.61}\left(1-\sqrt{1-\frac{2 \times 19.61 \times 6.448}{350}}\right)=0.02413>\rho_{\max }=0.01719$
Then Design the section as Double Reinforced Section (D.D.R.S)
$2-$ Assume $\quad \rho_{1}=0.75 \rho_{\max }$
$\rho_{1}=0.75 \times 0.01719=0.01289$
$A s_{1}=\rho_{1} b d=0.01289 \times 250 \times 460=1482.6 \mathrm{~mm}^{2}$
$R=\rho_{1} f y\left(1-\frac{1}{2} \rho m\right)=0.01289 \times 350\left(1-\frac{1}{2} \times 0.01289 \times 19.61\right)=3.94$
$M n_{1}=R b d^{2}=3.94 \times 250 \times 460^{2}=208.43 \mathrm{KN} . \mathrm{m}$
$3-M n_{2}=M n-M n_{1}=\left(\frac{307}{0.9}\right)-208.43=132.68 k N . m$
4- Calculate the Total Tension Steel
$A s_{2}=\frac{M n_{2}}{f y\left(d-d^{\prime}\right)}=\frac{132.68 \times 10^{6}}{350(460-65)}=959.7 \mathrm{~mm}^{2}$
$A s=A s_{1}+A s_{2}=1482.6+959.7=2442.3 \mathrm{~mm}^{2}$
5- Check the stress in compression steel
$\rho_{1}=\rho-\rho^{\prime} \nLeftarrow\left(\frac{\beta_{1} d^{\prime}}{m d}\right)\left(\frac{600}{600-f y}\right)=\left(\frac{0.85 \times 65}{19.61 \times 460}\right)\left(\frac{600}{600-350}\right)=0.014699$

$f^{\prime} s<f y=350 \mathrm{MPa} \quad$ NOT O.K
$f^{\prime} s=600\left(1-\frac{\beta_{1} d^{\prime}}{\rho_{1} m d}\right)=600\left(1-\frac{0.85 \times 65}{0.01289 \times 19.61 \times 460}\right)=314.9 \mathrm{MPa}$
$A s^{\prime}=A s_{2} \times\left(\frac{f y}{f s^{\prime}}\right)=959.7 \times\left(\frac{350}{314.9}\right)=1066.7 \mathrm{~mm}^{2}$
For $\emptyset 25 \mathrm{~mm}\left(A b=490 \mathrm{~mm}^{2}\right)$
Use $5 \phi 25 \mathrm{~mm}=\left(5 \times 490=2450 \mathrm{~mm}^{2}\right)>$ As required $=2442.3 \mathrm{~mm}^{2}$
For As' Use $3 \phi 22 \mathrm{~mm}=\left(3 \times 380=1140 \mathrm{~mm}^{2}\right)>A s^{\prime}$ required $=1066.7 \mathrm{~mm}^{2}$
6- Check no of Bars in one layer
use stirrup diameter ds $=10 \mathrm{~mm}$
$n=\frac{b-116-2 \times d s}{D+s}+1=\frac{250-116-2 \times 10}{25+25}+1=3.28=3$
$d^{\prime}=38+10+\frac{22}{2}=59 \mathrm{~mm}$
$d t=550-38-10-\frac{25}{2}=489.5 \mathrm{~mm}$
$d=h-y^{\prime}$
$y^{\prime}=\frac{3 \times 490 \times 60.5+2 \times 490 \times 110.5}{5 \times 490}=80.5 \mathrm{~mm}$
$d=550-80.5=469.5 \mathrm{~mm}$
$\rho_{b}=\frac{0.85}{19.61}\left(\frac{600}{600+350}\right)\left(\frac{489.5}{469.5}\right)=0.02854$
$\rho_{\max }=\left(\frac{0.003+\frac{350}{200000}}{0.008}\right) \times 0.02854=0.01695$

250 mm
$\rho=\frac{A s}{b d}=\frac{2450}{250 \times 469.5}=0.020873$
$\rho^{\prime}=\frac{A s^{\prime}}{b d}=\frac{1140}{250 \times 469.5}=0.00971$
Check again the stress in compression steel
$\rho_{1}=0.01116=\rho-\rho^{\prime} \nRightarrow\left(\frac{\beta_{1} d^{\prime}}{m d}\right)\left(\frac{600}{600-f y}\right)=\left(\frac{0.85 \times 59}{19.61 \times 469.5}\right)\left(\frac{600}{600-350}\right)=0.01307$
Then: $\quad f^{\prime} s<f y=350 \mathrm{MPa}$

Check the failure at the tension steel :
$\rho-\rho^{\prime}<\rho_{\text {max }}$
$\rho-\rho^{\prime}=0.020873-0.00971=0.01116<\rho_{\max }=0.01695 \quad$ O.K
To find the $f^{\prime} s$ use the direct method where: (also can use other method to find a and c)
$A a^{2}-B a-C=0$
$A=1$,
$B=m d\left(\rho-\frac{600}{f y} \rho^{\prime}\right)$
$C=\frac{600}{f y} \beta_{1} m d d^{\prime} \rho^{\prime}$
$a=\frac{1}{2}\left[B+\sqrt{B^{2}+4 A C}\right] \quad C=\frac{a}{\beta}$

$$
\begin{aligned}
& B=19.61 \times 469.5\left(0.020873-\frac{600}{350} \times 0.01116\right)=16.03 \\
& C=\frac{600}{350} \times 0.85 \times 19.61 \times 469.5 \times 59 \times 0.01116=8833.4 \\
& \begin{array}{l}
a=\frac{1}{2}\left[16.03+\sqrt{16.03^{2}+4 \times 1 \times 8833.4}\right]=102.3 \mathrm{~mm} \\
C=\frac{a}{\beta}=\frac{102.3}{0.85}=120.35 \mathrm{~mm} \\
f s^{\prime}=\left(\frac{c-d^{\prime}}{c}\right)\left(\frac{120.35-59}{120.35}\right)=305.87 \mathrm{MPa} \\
\emptyset M n=\emptyset\left[\left(\text { Asfy }- \text { As } s^{\prime} f s^{\prime}\right)\left(d-\frac{a}{2}\right)+\text { As }^{\prime} f s^{\prime}\left(d-d^{\prime}\right)\right] \\
\quad=0.9\left[(2450 \times 350-1140 \times 305.87) \times\left(469.5-\frac{102.3}{2}\right)+1140 \times 305.87 \times(469.5-59)\right] \\
=320.4 \mathrm{KN} . \mathrm{m}>\text { Applied Mu }=307 \mathrm{KN} . \mathrm{m} \quad O . \mathrm{K}
\end{array}
\end{aligned}
$$

Another method to calculate and c

$$
\begin{aligned}
& f^{\prime} s=600\left(1-\frac{\beta 1 d^{\prime}}{\rho_{1} m d}\right)=600\left(1-\frac{0.85 \times 59}{0.011163 \times 19.61 \times 469.5}\right)=307.2 \mathrm{MPa} \\
& f s^{\prime}=600\left(\frac{c-d^{\prime}}{c}\right) \\
& 307.2 C=600 C-35400 \\
& C=120.9 \mathrm{~mm} \\
& a=102.7 \mathrm{~mm} \text { ok }
\end{aligned}
$$

Example (5): A beam section is limited to a width $b=300 \mathrm{~mm}$. and a total depth $h=500 \mathrm{~mm}$ and is subjected to a factored moment of 405 kN .m. Determine the necessary reinforcement. Given: $f^{\prime}{ }_{c}=28 \mathrm{MPa}$ and $f_{y}=$ $420 \mathrm{mPa}, d^{\prime}=65 \mathrm{~mm}$.
Solution
1- Design the section considering single reinforced section (assume two layer of steel)
$d=h-90=500-90=410 \mathrm{~mm}$
$R=\frac{M n}{b \times d^{2}}=\frac{405 \times 10^{6}}{0.9 \times 300 \times 4102}=8.923$
$m=\frac{f y}{0.85 f^{\prime} c}=\frac{420}{0.85 \times 28}=17.65$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f y}}\right)$
$\rho_{b}=\frac{0.85}{17.65}\left(\frac{600}{600+420}\right)=0.028329$
$\rho_{\max }=\left(\frac{0.003+\frac{f y}{E s}}{0.008}\right) \rho_{b}$

$$
=\left(\frac{0.003+0.0021}{0.008}\right) \rho_{b}=0.6375 \times 0.028329=0.01806
$$

$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f y}}\right)=\frac{1}{17.65}\left(1-\sqrt{1-\frac{2 \times 17.65 \times 8.923}{420}}\right)=0.028329>\rho_{\max }=0.01806$

The Beam section should be design as D.D.R S
assume ρ_{1} vary from $0.75 \rho_{\max }$ to $\rho_{\max }$
Use $\rho_{1}=0.9 \rho_{\max }=0.9 \times 0.01806=0.016254$
$A s_{1}=\rho_{1} \times b \times d=0.016254 \times 300 \times 410=1999.24 \mathrm{~mm}^{2}$
$\rho_{1}=0.016254=\rho-\rho^{\prime} \neq\left(\frac{\beta_{1} d^{\prime}}{m d}\right)\left(\frac{600}{600-f y}\right)=\left(\frac{0.85 \times 65}{17.65 \times 410}\right)\left(\frac{600}{600-420}\right)=0.0254$
So the $f s^{\prime}<f y$
Check the stress in steel at compression zone from Formula:
$f^{\prime} s=600\left(1-\frac{\beta d^{\prime}}{\rho_{1} m d}\right)=600\left(1-\frac{0.85 \times 65}{0.016254 \times 17.65 \times 410}\right)=318.16 \mathrm{MPa}$
$A s^{\prime}=A s_{2}\left(\frac{f y}{f s^{\prime}}\right)$
$A s_{2}=\frac{M n_{2}}{f y\left(d-d^{\prime}\right)}$
$M n_{2}=M n-M n_{1}$
$M n_{1}=R b d^{2}$
$R=\rho_{1} f y\left(1-\frac{1}{2} \rho_{1} m\right)$

$R=0.016254 \times 420\left(1-\frac{1}{2} \times 0.016254 \times 17.65\right)=5.848$
$M n_{1}=5.848 \times 300 \times 410^{2}=294.9 \mathrm{kN} . \mathrm{m}$
$M n_{2}=\frac{M u}{\emptyset}-M n_{1}=\frac{405}{0.9}-294.9=155.1 \mathrm{KN} . \mathrm{m}$
$A s_{2}=\frac{M n_{2}}{f y\left(d-d^{\prime}\right)}=\frac{155.18106}{420(410-65)}=1070.4 \mathrm{~mm}^{2}$
$A s^{\prime}=A s_{2} \times\left(\frac{f y}{f s^{\prime}}\right)=1070.4 \times\left(\frac{420}{381.16}\right)=1179.5 \mathrm{~mm}^{2}$
$A s=A s_{1}+A s_{2}=1999.24+1070.4=3070 \mathrm{~mm}^{2}$
As, Use $5 \emptyset 28 \mathrm{~mm}=3075 \mathrm{~mm}^{2}$
$A s^{\prime}$, Use $2 \emptyset 28 \mathrm{~mm}=1230 \mathrm{~mm}^{2}$
$n=\frac{b-116-2 \times d s}{D+S}+1=\frac{300-116-2 \times 10}{28+25}+1=3.09$
$y^{\prime}=\frac{2 \times(615) \times 115+3 \times(615) \times 62}{5 \times 615}=83.2 \mathrm{~mm}$
$d^{\prime}=38+10+\frac{28}{2}=62 \mathrm{~mm}$
$d t=500-38-10-\frac{28}{2}=438 \mathrm{~mm}$
$d=500-y^{\prime}=416.8 \mathrm{~mm}$
$\rho_{b}=\frac{438}{416.8} \times 0.028329=0.02977$

$\rho_{\text {max }}=0.6375 \rho_{\mathrm{b}}=0.6375 \times 0.0297=0.01898$
$\rho=\frac{3075}{300 \times 416.8}=0.02459$
$\rho^{\prime}=\frac{A s^{\prime}}{b d}=\frac{1230}{300 \times 416.8}=0.009837$
Check the stress in compression steel :
$\rho_{1}=0.01475=\rho-\rho^{\prime} \not \equiv\left(\frac{\beta_{1} d^{\prime}}{m d}\right)\left(\frac{600}{600-f y}\right)=\left(\frac{0.85 \times 62}{17.65 \times 416.8}\right)\left(\frac{600}{600-420}\right)=0.023879$
So the $f s^{\prime}<f y=420 \mathrm{MPa}$
To find the value of $f s^{\prime}$ there is two method, Direct Method and Indirect Method
1- Direct Method
$A a^{2}-B a-C=0$
$A=1$,
$B=m d\left(\rho-\frac{600}{f y} \rho^{\prime}\right)$
$C=\frac{600}{f y} \beta_{1} m d d^{\prime} \rho^{\prime}$
$a=\frac{1}{2}\left[B+\sqrt{B^{2}+4 A C}\right]$,
$C=\frac{a}{\beta}$
Find the constant ;

$B=17.65 \times 411.5\left(0.02459-\frac{600}{420} * 0.009837\right)=76.53$
$C=\frac{600}{420} \times 0.85 \times 17.65 \times 411.5 \times 62 \times 0.009837=5378.85$
$a=\frac{1}{2}\left[76.53+\sqrt{76.53^{2}+4 \times 1 \times 5378.85}\right]=120.989 \mathrm{~mm}$
$C=\frac{a}{\beta}=\frac{120.989}{0.85}=142.34 \mathrm{~mm}$
$f^{\prime} s=600\left(\frac{c-d^{\prime}}{c}\right)=600\left(\frac{142.34-62}{142.34}\right)=338.7 \mathrm{mPa}$
2- The In direct Method
find a when $f y=420 M P a$
$a=\frac{A s f y-A s^{\prime} f s^{\prime}}{0.85 f^{\prime} c b}=\frac{3075 \times 420-1230 \times 420}{0.85 \times 28 \times 300}=108.23 \mathrm{~mm}$
(1st attempt)
$C=\frac{108.23}{0.85}=127.34 \mathrm{~mm}$
$f^{\prime} s=600\left(\frac{c-d^{\prime}}{c}\right)=600\left(\frac{127.34-62}{127.34}\right)=307.9 \mathrm{MPa}<420 \mathrm{Mpa}$
$a=\frac{A s f y-A s^{\prime} f s^{\prime}}{0.85 f^{\prime} c b}=\frac{3070 \times 420-1230 \times 307.9}{0.85 \times 28 \times 300}=127.55 \mathrm{~mm}$
($2 n d$ attempt)
and $\mathrm{C}=150 \mathrm{~mm}$
$f s^{\prime}=600\left(\frac{150-62}{150}\right)=352 \mathrm{MPa}$

$$
=413.4 \mathrm{KN} . \mathrm{m}>\text { Applied Moment } \mathrm{Mu}=405 \mathrm{KN} . \mathrm{m} \quad \text { OK }
$$

$$
\begin{aligned}
& a=\frac{A s f y-A s^{\prime} f s^{\prime}}{0.85 f^{\prime} c b}=\frac{3070 \times 420-1230 \times 352}{0.85 \times 28 \times 300}=119.95 \mathrm{~mm} \quad \text { and } C=141.12 \mathrm{~mm} \quad(3 \mathrm{rd} \text { attempt) } \\
& f s^{\prime}=600\left(\frac{141.12-62}{141.12}\right)=336.4 \mathrm{MPa} \\
& a=\frac{A s f y-A s^{\prime} f s^{\prime}}{0.85 f^{\prime} c b}=\frac{3070 \times 420-1230 \times 336.4}{0.85 \times 28 \times 300}=122.6 \mathrm{~mm} \quad \text { and } C=144.28 \mathrm{~mm} \\
& f s^{\prime}=600\left(\frac{144.28-62}{144.28}\right)=342.16 . M P a \\
& a=\frac{A s f y-A s^{\prime} f s^{\prime}}{0.85 f^{\prime} c b}=\frac{3070 \times 420-1230 \times 342.16}{0.85 \times 28 \times 300}=121.6 \mathrm{~mm} \quad \text { and } C=143.1 \mathrm{~mm} \\
& \text { (4th attempt) } \\
& \text { (5th attempt) } \\
& f s^{\prime}=600\left(\frac{143.1-62}{143.1}\right)=340.1 \mathrm{MPa} \\
& \emptyset M n=\emptyset\left[\left(A s f y-A s^{\prime} f s^{\prime}\right)\left(d-\frac{a}{2}\right)+A s^{\prime} f s^{\prime}\left(d-d^{\prime}\right)\right] \\
& =0.9\left[(3075 \times 420-1230 \times 338.7) \times\left(416.8-\frac{121.4}{2}\right)+1230 \times 338.7 \times(416.8-62)\right]
\end{aligned}
$$

Reinforced Concrete Design

By: Assist. Prof. Dr. Haleem K. Hussain

University Of Basrah Engineering College Civil Engineering Department

E-Mail: haleem breu valnue com

FLEXURAL DESIGN OF T- BEAM CONCRETE SECTION

Introduction

T-Beams RC floors normally consist of slabs and beams that are cast monolithically. The two act together to resist loads and because of this interaction, the effective section of the beam is a T or L section. T -section for interior beams L-section for exterior beams.
Normally, the thickness of slab varies between 100 mm and 200 mm and the web width its from 200 mm to 400 mm and its often known. Effective depth and As reinforcement quantity will be calculated. When effective stress block depth less than hf of slab thickness that's lead to design the Beam as a rectangular section while with a greater than hf , the section will be true T - section
Two Known Case for Design Procedures :
$1-\mathrm{d}$ is known and As should be calculated
A-Check the section is behave like rectangular section or T section. Assume $\mathrm{a}=\mathrm{hf}$ and calculate the moment produce by the two flanges :

$$
M n_{f}(\text { flange })=\emptyset 0.85 f^{\prime} c b . h_{f}\left(d-\frac{h_{f}}{2}\right)
$$

B- if the applied moment $M u>M n_{f}$ then :
$a>h_{f}$ section should be design as T- Section
and if the applied moment $M u<M n_{f}$ then :
$a<h f$ and the section should be design as rectangular section ($b d$)
$R=\frac{M u}{\emptyset b d^{2}}$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f y}}\right)$

$A s=\rho b d>A s_{\text {min }}$
In T- section case calculate :
Asf $=\frac{(b-b w) h_{f}}{m}$ same (Asf.fy $\left.=0.85 f^{\prime} c .(b-b w) h_{f}\right)$
$M u_{2}=\emptyset$ Asf fy $\left(d-\frac{h_{f}}{2}\right)$
$M u=M u_{1}+M u_{2}$
$R=\frac{M u_{1}}{\emptyset b d^{2}}, \quad \rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f y}}\right)$
$A s_{1}=\rho b d \quad$ and \quad Total $A s=A s_{1}+A s_{2}$
2- When As and d is Unknown:
A- Assume $a=h f$ then we can calculated the steel area at tension zone with equal the compression force for flange
$A s_{f t}=\frac{b h f}{m} \quad$ or $\quad\left(A s_{f t} . f y=0.85 f^{\prime} c b h f\right)$
B- calculate d depending on calculated Asf and the Applied Mu
$M u=\emptyset$ Asft fy $\left(d-\frac{h_{f}}{2}\right)$

or $\quad d=\frac{M u}{\emptyset \text { Asft fy }}+\frac{h_{f}}{2}$
If d is a suitable then :
$h=d+90 \quad$ (for two layer) and
$h=d+65$
(for one layer)

Example (6): The T-beam section Shown below has a width $b w=250 \mathrm{~mm}$, a flange width be $=1000 \mathrm{~mm}$, a flange thickness $=100 \mathrm{~mm}$ and effective depth $d=370 \mathrm{~mm}$. Determine the necessary reinforcement if the applied factored moment $\mathrm{Mu}=380 \mathrm{KN} . \mathrm{m}$. Given: $f^{\prime}{ }_{c}=21 \mathrm{MPa}$ and $f_{y}=420 \mathrm{Mpa}$.

1- Check the neutral axis depth

$$
\text { assume : } \quad a=h f=100 \mathrm{~mm}
$$

$\emptyset M n=\emptyset\left(0.85 f^{\prime} c\right)$ be $h f\left(d-\frac{h f}{2}\right)=0.9 \times 0.85 \times 21 \times 1000 \times 100\left(370-\frac{100}{2}\right)=514.08$ KN. $\mathrm{m}>380 \mathrm{KN} . \mathrm{m}$
\therefore the section design as a Rectangular section with $b=b e=1000 \mathrm{~mm}$
$R=\frac{M u}{\emptyset b d^{2}}=\frac{380 \times 10^{6}}{0.9 \times 1000 \times 370^{2}}=3.084$
$m=\frac{f y}{0.85 f^{\prime} c}=\frac{420}{0.85 \times 21}=23.53$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f y}}\right)=\frac{1}{23.53}\left(1-\sqrt{1-\frac{2 \times 23.53 \times 3.084}{420}}\right)=0.008118$
$A s=\rho b d=0.008118 \times 1000 \times 370=3003.75 \mathrm{~mm}^{2}$
$a=\rho m d=0.008118 \times 23.53 \times 370=70.68 \mathrm{~mm}<h f=100 \mathrm{~mm}$

Total As $=5 \times 615=3075 \mathrm{~mm}^{2}$
$\rho_{w}=\frac{3075}{250 \times 370}=0.0332>\rho_{\text {min }}=\frac{1.4}{420}=0.0033$

$\operatorname{Max} A s=\frac{(b-b w) h_{f}}{m}+\rho_{\text {max }} b w d$
$\rho_{\mathrm{b}}=\frac{\beta_{1}}{m}\left(\frac{600}{600+420}\right)\left(\frac{d t}{d}\right)=\frac{0.85}{17.65}\left(\frac{600}{600+420}\right)\left(\frac{d t}{d}\right)$
$y^{\prime}=\frac{2 \times(615) \times 115+3 \times(615) \times 62}{5 \times 615}=83.2 \mathrm{~mm}$
$h=370+y^{\prime}=370+83.5=453.5 \mathrm{~mm}$
$d t=453.5-38-10-\frac{28}{2}=391.5 \mathrm{~mm}$
$\rho_{\mathrm{b}}=\frac{0.85}{23.53}\left(\frac{600}{600+420}\right)\left(\frac{391.5}{370}\right)=0.02248$
$\rho_{\max }=\left(\frac{0.003+\frac{f y}{E s}}{0.008}\right) \rho_{b}=06375 \times 0.02248=0.01433$

Max As $=\frac{(1000-250) \times 100}{23.53}+0.01433 \times 250 \times 370=4513 \mathrm{~mm}^{2}>A s=3075 \mathrm{~mm}^{2}$
$c=\frac{a}{\beta_{1}}=\frac{70.68}{0.85}=83.15 \mathrm{~mm}$
$\epsilon_{t}=\left(\frac{d t-c}{c}\right) \times 0.003=\left(\frac{391.5-83.15}{83.15}\right) \times 0.003=0.0113>0.005$ OK

$$
\varnothing=0.9 \text { T.C }
$$

Example (7): The Floor system shown below consist of 75 mm slab thickness supported by 4.25 m span beam spaced 3 m on center. The beam have a web width $\mathrm{bw}=350 \mathrm{~mm}$ and an effective depth $\mathrm{d}=470 \mathrm{~mm}$. Calculate the necessary reinforcement for a typical section interior beam if the factored applied moment $\mathrm{Mu}=575 \mathrm{KN} . \mathrm{m}$. Given: ${f^{\prime}}_{c}={ }_{21} M P a$ and $f_{y}=420 \mathrm{mPa}$,

Solution:

find the effective be:
$1-b e=16 h f+b w=16 \times 75+350=1550 \mathrm{~mm}$
$2-b e=\frac{L}{4}=\frac{4250}{4}=1062.5 \mathrm{~mm}$
$3-b e=b($ center to center adjacent panels $)=3000 \mathrm{~mm}$
$\therefore \mathrm{be}=1062.5 \mathrm{~mm}$

1-Design section as Rectangular Section :
$R=\frac{M u}{\emptyset b d^{2}}=\frac{575 \times 106}{0.9 \times 1062.5 \times 470^{2}}=2.722$
$m=\frac{f y}{0.85 f^{\prime} c}=\frac{420}{0.85 \times 21}=23.53$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f y}}\right)=\frac{1}{23.53}\left(1-\sqrt{1-\frac{2 \times 23.53 \times 2.722}{420}}\right)=0.007069$
$a=\rho m d=0.007069 \times 23.53 \times 470=78.18 \mathrm{~mm}>h f=75 \mathrm{~mm}$
\therefore Design as T- Section
calculate As $f=\frac{(b-b w) h_{f}}{m}=\frac{(1062.5-350) \times 75}{23.53}=2271 \mathrm{~mm}^{2}$
$M u_{2}=\emptyset$ Asf fy $\left(d-\frac{h f}{2}\right)=0.9 \times 2271 \times 420 \times\left(470-\frac{75}{2}\right)=371.27 \mathrm{KN} . \mathrm{m}$
$\therefore M u_{1}=M u-M u_{2}=575-371.27=203.73 K N . m$
$R=\frac{M u}{\emptyset b d^{2}}=\frac{203.73 \times 10^{6}}{0.9 \times 350 \times 470^{2}}=2.928$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f y}}\right)=\frac{1}{23.53}\left(1-\sqrt{1-\frac{2 \times 23.53 \times 2.928}{420}}\right)=0.007662$
$A s_{1}=\rho b d=0.007662 \times 350 \times 470=1260.35 \mathrm{~mm}^{2}$
Total As $=\mathrm{As}_{1}+\mathrm{As}_{2}=1260.35+2271=3531.35 \mathrm{~mm}^{2}$
Use $6 \emptyset 28 \mathrm{~mm}=3690 \mathrm{~mm}^{2}$
$a=\rho m d=0.007662 \times 23.53 \times 470=84.73 \mathrm{~mm}$
$c=\frac{a}{\beta 1}=\frac{84.73}{0.85}=99.68 \mathrm{~mm}$
$\epsilon t=\left(\frac{d t-c}{c}\right) \times 0.003=\left(\frac{496.5-99.68}{99.68}\right) \times 0.003=0.01194>0.005 \quad$ OK
$\therefore \varnothing=0.9 \quad$ T. C
$\rho_{\min }=\frac{1.4}{f y}=0.0033<\rho \quad O K$

$$
d t=470+\frac{25}{2}+\frac{28}{2}=496.5 \mathrm{~mm}
$$

Max As $=\frac{(b-b w) h_{f}}{m}+\rho_{\text {max }} b w d$
$\rho_{b}=\frac{0.85}{23.53}\left(\frac{600}{600+420}\right)\left(\frac{496.5}{470}\right)=0.02245$
$\rho_{\max }=\left(\frac{0.003+\frac{f y}{E s}}{0.008}\right) \rho_{b}$
$=\left(\frac{0.003+0.0021}{0.008}\right) \rho_{b}=0.6375 \times 0.02245=0.01431$
Max As $=\frac{(1032.5-350) \times 75}{23.53}+0.01431 \times 350 \times 470=4625 \mathrm{~mm}^{2}>3690 \mathrm{~mm}^{2}$ OK

Example (7): In slab beam, The flange width was determine to be $=1220 \mathrm{~mm}$, the web width was bw=400 mm , and the slab thickness was $\mathrm{hf}=100 \mathrm{~mm}$. Design T- section to resist an external factored moment $\mathrm{Mu}=$ $1100 \mathrm{kN} . \mathrm{m}$. Given: ${f^{\prime}}^{\prime}{ }_{=}=21 \mathrm{MPa}$ and $f_{y}=420 \mathrm{mPa}$,

Solution

d is unknown
So choose $a=h_{f}=100 \mathrm{~mm}$
$T=C$
$A s_{f t} f y=0.85 f^{\prime} c b h f$
$A s_{f t}=\frac{0.85 f^{\prime} c b h f}{f y}=\frac{0.85 \times 21 \times 1220 \times 100}{420}=5185 \mathrm{~mm}^{2}$
now calculate d from:
$M u=\emptyset M n=\emptyset A s f t f y\left(d-\frac{h_{f}}{2}\right)=0.9 \times 5185 \times 420 \times\left(d-\frac{100}{2}\right)$
$d=661.24 \mathrm{~mm}$
1- If we choose $d>661.24 \mathrm{~mm}$ (say 800 mm), in this case $a<h f$ and the section will be design as Rectangular section
$R=\frac{M u}{\emptyset b d^{2}}=\frac{1100 \times 10^{6}}{0.9 \times 11220 \times 800^{2}}=1.565$
$m=\frac{f y}{0.85 f^{\prime} c}=\frac{420}{0.85 \times 21}=23.53$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f y}}\right)=\frac{1}{23.53}\left(1-\sqrt{1-\frac{2 \times 23.53 \times 1.565}{420}}\right)=0.003906$
$A s=\rho b d=0.003906 \times 1220 \times 800=3812 \mathrm{~mm}^{2}$
Use $8 \emptyset 25 \mathrm{~mm}\left(8 \times 490=3920 \mathrm{~mm}^{2}\right)$
$\rho \mathrm{w}=\frac{3920}{400 \times 800}=0.01225>\rho_{\text {min }}=\frac{1.4}{420}=0.0033$
$\rho_{\text {max }}=0.6375 \rho \mathrm{~b}$
$d t=d+\frac{25}{2}+\frac{25}{2}=825 \mathrm{~mm}$
$\rho_{\max }=0.6375 \times \frac{0.85}{23.53}\left(\frac{600}{600+420}\right)\left(\frac{825}{800}\right)=0.01397$
$\operatorname{Max} A s=A s_{f}+\rho_{\text {max }} b w d$
$\operatorname{Max} A s=\frac{(b-b w) h_{f}}{m}+\rho_{\max } b w d=\frac{(1220-400) \times 100}{23.53}+0.01397 \times 400 \times 800=7955 \mathrm{~mm}^{2}>3920 \mathrm{~mm}^{2} \quad$ OK
2- If we choose $d<661.24 \mathrm{~mm}$, (say 800 mm) in this case $a>h f$ and the section will be design as $\mathrm{T}-$ section

Calculate $A s_{f}=\frac{(b-b w) h_{f}}{m}=\frac{(1220-400) \times 100}{23.53}=3484.9 \mathrm{~mm}^{2}$
$M u_{2}=\emptyset$ Asf fy $\left(d-\frac{h_{f}}{2}\right)=0.9 \times 3484.9 \times 420 \times\left(600-\frac{100}{2}\right)=724.51 \mathrm{KN} . \mathrm{m}$
$\therefore M u_{1}=M u-M u_{2}=1100-724.51=375.49$ KN. m
$R=\frac{M u}{\emptyset b d^{2}}=\frac{375.49 \times 106}{0.9 \times 400 \times 600^{2}}=2.8973$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f y}}\right)=\frac{1}{23.53}\left(1-\sqrt{1-\frac{2 \times 23.53 \times 2.8973}{420}}\right)=0.007573$
$A s_{1}=\rho b d=0.007573 \times 400 \times 600=1817.5 \mathrm{~mm}^{2}$
Total As $=\mathrm{As}_{1}+\mathrm{As}_{2}=1817.5+3484.9=5302.4 \mathrm{~mm}^{2}$
Use $8 \emptyset 30 \mathrm{~mm}=5648 \mathrm{~mm}^{2}$
$n=\frac{b-116-2 \times d s}{D+s}+1=n=\frac{400-116-2 \times 10}{30+25}+1=5.8 \cong 5$
$d t=d+\frac{30}{2}+\frac{25}{2}=627.5 \mathrm{~mm}$
$a=\rho m d=0.007573 \times 23.53 \times 600=106.9 \mathrm{~mm}$
$c=\frac{a}{\beta_{1}}=\frac{106.9}{0.85}=125.8 \mathrm{~mm}$
$\epsilon_{t}=\left(\frac{d t-c}{c}\right) \times 0.003=\left(\frac{627.5-125.8}{125.8}\right) \times 0.003=0.01196>0.005(O \mathrm{~K})$
$\therefore \emptyset=0.9 \quad$ T.C

Thank You..........

